cules since the atoms must first have reached equilibrium by (12) and this preliminary exchange itself cannot be much faster than the competitive

$$
\begin{equation*}
\mathrm{I}+\mathrm{I}_{2}{ }^{*} \rightleftarrows \mathrm{I}^{*}+\mathrm{I}_{2} \tag{12}
\end{equation*}
$$

removal by (13) because of the similarity of concentrations and estimated activation energies. ${ }^{15}$ It is

$$
\begin{equation*}
R+\mathrm{I}_{2}{ }^{*} \longrightarrow R I^{*}+\mathrm{I} \tag{13}
\end{equation*}
$$

very probable, therefore, that methyl radicals recombine with iodine molecules rather than iodine atoms in the liquid state at $2537 \AA$. It appears
from the recent work of Noyes ${ }^{16}$ on the photolysis of iodine and recombination of iodine atoms in solution that primary recombination might occur with methyl iodide under more favorable conditions where less energy is given to the radical formed in photolysis.

Acknowledgment.-The authors are grateful to Dr. R. R. Williams, Jr., for helpful discussions of this work. One of us (R. H. S.) is indebted to the Peter C. Reilly Foundation for a fellowship.
(16) R. M. Noyes, ibid., 18, 999 (1950).

Notre Dame, Ind. Received October 9, 1950
[Contribution from the Sterling-Winthrop Research Institute]

Chlorinated 3-Trifluoromethylphenols

By Aram Mooradian, T. J. Slauson and S. J. Marsala

Abstract

4-Chloro- and 6-chloro-3-trifluoromethylphenols have been prepared through the corresponding chloro-3-trifluoromethylanilines. By further chlorination of these phenols, 2,4- and 2,6-dichloro-3-trifluoromethylphenols have been isolated and identified. A new series of compounds incidental to the preparation and characterization of these phenols is described.

In the early work of Swarts, ${ }^{1} m$-trifluoromethylphenol was prepared by diazotizing m-trifluoromethylaniline. It was originally our ${ }^{2}$ intention to prepare both alkylated and chlorinated derivatives of this phenol. In our attempts at alkylation, direct alkylation with t-butyl alcohol in the presence of aluminum chloride was unsuccessful as were attempts at condensation of lower aldehydes with the phenol in acetic acid solution containing dissolved hydrogen chloride. Rearrangement of ethers and esters in the presence of the usual agents such as sulfuric acid-acetic acid, boron trifluoride, aluminum chloride, ${ }^{3}$ heat, heat and diethylaniline were all unsuccessful, the best yield obtained being on the order of $5-10 \%$. The intermediates used in this work are shown in Table I.
melting at 54°. Along with this, another dichloride was formed in lesser amounts for, though we were not then able to isolate the pure dichloride, it was possible to prepare a pure p-nitrobenzyl ether from the uncrystallized fraction of the chlorination product. In order to establish the structures of these materials, the two monochlorides described above were further chlorinated. When 4 -chloro-3-trifluoromethylphenol was chlorinated, a mixture resulted. From this mixture 2,4-dichloro-3-trifluoromethylphenol, m.p. $33-34^{\circ}$, was obtained; the p nitrobenzyl ether of this corresponded to that obtained from the uncrystallizable residue described above.

When 2-chloro-5-trifluoromethylphenol was chlorinated, chlorination proceeded with much greater

Table I

${ }^{a}$ E. T. McBee, R. O. Bolt, P. J. Graham and R. F. Tebbe, This Journal, 69, 947 (1947).

4-Chloro-3-trifluoromethylphenol and 2 -chloro5 -trifluoromethylphenol were prepared by diazotizing the corresponding anilines. These as well as derivatives and intermediates are listed in Table II. In our chlorination studies m-trifluoromethylphenol was chlorinated with the intention of introducing three chlorine atoms, but the predominating product was 2,6-dichloro-3-trifluoromethylphenol
(1) F. Swarts, Bull. classe sci., Acad. ray. Belg., 241 (1913), Chem. Zentr., 84, II, 760 (1913).
(2) This work was undertaken at the suggestion of Dr. C. M. Suter and Dr. E. J. Lawson.
(3) A. L. Henne and M. S. Newman, This Journal, 60, 1697 (1938).
difficulty. 2,6-Dichloro-3-trifluoromethylphenol was isolated.

The structures of these dichlorides were established by the sulfuric acid hydrolytic procedure of Le Fave. ${ }^{4}$ Hydrolysis of the 54° isomer gave 2,4-dichloro-3-hydroxybenzoic acid. This was shown by making the methyl ether which melted at 162 163° as reported in the literature. ${ }^{5}$ The $33-34^{\circ}$ isomer, on hydrolysis, gave 2,6-dichloro-3-hydroxybenzoic acid. This as well as its methyl ether were compared with authentic samples prepared as de-
(4) G. M. Le Fave, ibid., 71, 4148 (1949).
(5) H. H. Hodgson and H. G. Beard, J. Chem. Soc., 129, 152 (1926).

Table II
-Chloro-3-trifluoromethylaniline ${ }^{a}$
4-Chloro-3-trifluoromethylphenol
4-Chloro-3-trifluoromethylanisole
-Chloro-3-trifluoromethylphenoxyacetic acid
4-Chloro-3-trifluoromethylphenyl-4'-nitrobenzyl ether
2-Chloro-5-trifluoromethylaniline?
-Chloro-5-trifluoromethylphenol
-Chloro-5-trifluoromethylanisole
2-Chloro-5-trifluoromethylphenoxyacetic acid
2-Chloro-5-trifluoromethylphenyl-4'-nitrobenzyl ether
-Chloro-5-trifluoromethylphenyl 4-nitrobenzoate
2,4-Dichloro-3-trifluoromethylphenol
$\begin{array}{ll}\text { 2,4-Dichloro-3-trifluoromethylanisole } & 90 \\ \text { 2,4-Dichloro-3-trifluoromethylphenyl-4'-nitrobenzyl ether } \\ 74\end{array}$
2,6-Dichloro-3-trifluoromethylphenol
2,6-Dichloro-3-trifluoromethylanisole
4-Dichloro-3-hydroxybenzoic acid
6-Dichloro-3-trifluoromethylphenyl-4'-nitrobenzyl ether 52
${ }^{a}$ French Patent 745,293 (1933)

Chlorinated Phenols, Derivatives and Intermediates
 Chlorinated Phenols, Derivatives and Intermediates

Nitrogen, $\%$
Calcd. Found $715 \quad 7.08$

42.77	42.79	2.05	2.24	18.05	17.72		
				16.84	16.99		
42.45	42.43	2.36	2.78	13.92	14.07		
				10.71	10.43	4.23	3.93

an 80% yield of 4-chloro-3-trifluoromethylanisole, b.p. 113° at 39 mm .

4-Chloro-3-trifiuoromethylphenoxyacetic Acid.-A mixture of 3.93 g . of 4 -chloro-3-trifluoromethylphenol and 3.78 g . of chloroacetic acid was dissolved in a solution of 2.4 g . of sodium hydroxide in 25 ml . of water. This was heated eight hours on a steam-bath, acidified with dilute hydrochloric acid and extracted with ether. The ether extract was then extracted with sodium bicarbonate solution and the bicarbonate solution acidified; yield 3.05 g ., m.p. $133-134.5^{\circ}$ from benzene.

2-Chloro-5-trifiuoromethylphenol.-This phenol, its intermediates and derivatives listed in Table II were made in a similar fashion.
2,6-Dichloro-3-trifluoromethylphenol.-The chlorination of 2-chloro-5-trifluoromethylphenol did not occur at an appreciable rate in carbon tetrachloride at room temperature. To a suspension of 6.3 g . of 2 -chloro- 5 -trifluoromethylphenol in 250 ml . of concentrated hydrochloric acid was added a solution of 1.35 g , of potassium chlorate in 25 ml . of water. Shaking the stoppered flask vigorously seemed to result in complete absorption of the chlorine formed. After $15 \mathrm{~min}-$ utes the reaction mixture was diluted with two parts of water and extracted with ether. Distillation of the ether extract gave a small fraction, b.p. $85-98^{\circ}$ at 20 mm., and about $4 \mathrm{~g} .$, b.p. $98-110^{\circ}$ at 20 mm . A small amount of Skellysolve A was added to the higher boiling fraction and extensive cooling with a Dry Ice-methylene chloride-bath was resorted to. The solid which precipitated amounted to $2.1 \mathrm{~g} ., \mathrm{m} . \mathrm{p} .53-54^{\circ}$. Hydrolysis of this phenol with concentrated sulfuric acid gave 2,4-dichloro-3-hydroxybenzoic acid whose properties are indicated in Table LI. Methylation of this phenol in the ordinary way with dimethyl sulfate gave 2,4-dichloro-3-methoxybenzoic acid, ${ }^{3}$ m.p. $162-163^{\circ}$.

2,4-Dichloro-3-trifiuoromethylphenol.-A solution of 20 g. of 4-chloro-3-trifluoromethylphenol in 250 cc . of carbon tetrachloride was prepared and chlorine was bubbled through the solution for three hours at room temperature. The chlorine saturated solution was allowed to stand three hours more and was then distilled under reduced pressure. There resulted 21.5 g . of product, b.p. $119-121^{\circ}$ at 34 mm ., $n^{25} \mathrm{D} 1.5094$. This oil was chilled till it crystallized and then filtered cold. The resultant crystals were recrystallized from Skellysolve A to give 10 g . of large well-shaped crystals, m.p. $33-34^{\circ}, n^{25} \mathrm{D} 1.5105$. From the uncrystallized portion of the product a nitrobenzyl ether, m.p. $176.5-178^{\circ}$, of more

2,4-dichloro-3-trifluoromethylphenol was prepared. The oil was evidently contaminated with the isomeric compound preventing further crystallization.

Chlorination of 3 -Trifluoromethylphenol.-Chlorine gas was passed into a solution of 210 g . of 3-trifluoromethylphenol in 400 cc . of carbon tetrachloride quite rapidly until an excess of gas had been added. The reaction mixture was allowed to stand a few hours then distilled under reduced pressure. There resulted 256 g . of crude product, b.p. 97 130° at 29 mm . This was carefully fractionated and a $140-$ g. cut, b.p. $114-116^{\circ}$ at 29 mm ., taken. On standing, more than one-half of this crystallized in large crystals m.p. 54° from Skellysolve A. This was identical with the 2,6-di-chloro-3-trifluoromethylphenol described above.

The uncrystallized portion was converted to a p-nitrobenzyl ether and. a small amount of 2,4-dichloro-3-trifluoro-methylphenyl-4'-nitrobenzyl ether, m.p. 176-177 ${ }^{\circ}$, resulted.

In a similar fashion, 3-trifluoromethylphenol was treated with only one mole of chlorine. The reaction was not clean cut since some dichlorinated material and some unchlorinated material resulted; a cut boiling at $70-72^{\circ}$ at 13 mm., $n^{25} \mathrm{D} 1.4770$ was taken. This fraction analyzed well for monochloro-3-trifluoromethylphenol (Cl , calcd. 18.04; found 17.89%) but was evidently a mixture of two isomers. Hydrolysis with sulfuric acid gave 4-chloro-3-hydroxybenzoic acid, ${ }^{*}$ m.p. 220° and another material, m.p. $153-$ 157° which resisted further purification. This is undoubtedly 2-chloro-3-hydroxybenzoic acid, ${ }^{\circ}$ m.p. $157-158^{\circ}$. This mixture was treated with sodium hydroxide and chloroacetic acid and a clean-cut product, m.p. 135-136 ${ }^{\circ}$, resulted (Anal. Calcd.: C, 42.45; II, 2.36. Found: C, 42.71; $\mathrm{H}, 2.56)$. However a mixed melting point with 4 -chloro-3trifluoromethylphenoxyacetic acid showed a sharp depression (m.p. 108-112 ${ }^{\circ}$), and neither was it identical with 2 -chloro-5-trifluoromethylphenoxyacetic acid, m.p. 105$106^{\circ}$. Hence this derivative must be 2 -chloro-3-trifluoromethylphenoxyacetic acid.

Acknowledgment.--The authors are indebted to Mr. M. E. Auerbach and Mr. K. D. Fleischer and co-workers for the analyses reported.
(8) P. H. Beyer, Rec. trav. chim., 40, 621 (1921).
(9) G. Mazzara and V. Bertozzi, Gazz. chim. ital., 30, II, 84 (1900).

Rensselaer, N. Y. Received December 26, 1950

[Contribution from the Chemical Laboratories of Purdue UNiversity]

The Reactions of Some Triarylsilanes with Methyllithium and Phenylisopropylpotassium

By Robert A. Benkeser and Frank J. Riel

The reaction of tri- p-chlorophenylsilane, tris-(p-trifluoromethylphenyl)-silane, tri-p-tolylsilane and tri-p-anisylsilane, with methyllithium was investigated. In all cases the corresponding triarylmethylsilane was formed. Tri-o-tolylsilane reacts with phenylisopropylpotassium in a manner similar to tri-o-tolylmethane in that all three methyl groups are metalated. When the metalated product is carbonated, a silane tricarboxylic acid is formed. The acid can be esterified to form a triethyl ester. Treatment of the metalated product with methyl iodide forms tri-o-ethylphenylsilane. When tri-p-tolylsilane and triphenylsilane are treated with phenylisopropylpotassium, disproportionation occurs with the formation of tetra-ptolylsilane and tetraphenylsilane, respectively. On the other hand tri-p-tolylmethylsilane reacts with phenylisopropylpotassium to form tri-p-ethylphenylmethylsilane upon treatment of the metalated product with methyl iodide.

In attempting the preparation of a compound containing a silicon-metal bond, Gilman ${ }^{1}$ and Meals ${ }^{2}$ independently discovered that triethylsilane will react with methyl- or n-butyllithium according to the equation

$$
\mathrm{Et}_{3} \mathrm{SiH}+\mathrm{R}^{\prime} \mathrm{Li} \longrightarrow \mathrm{Et}_{3} \mathrm{SiR}^{\prime}+\mathrm{LiH}
$$

This reaction was later extended by Gilman ${ }^{3}$ to triphenylsilane and various other organolithium compounds.

The formation of lithium hydride in this reaction indicates that the silicon-hydrogen bond is
(1) H. Gilman and S. P. Massie, This Journat, 68, 1128 (1946).
(2) R. N. Meals, ibid., 68, 1880 (1946j).
(3) H. Gilman and H. W. Melvin, Jr., ibill, 71, 4050 (1949).
broken with the elimination of a hydride ion. ${ }^{4}$ This suggests that if electron attracting groups were attached to the silicon atom the electron pair making up the silicon-hydrogen bond might be sufficiently displaced toward the silicon atom that the hydride ion would no longer be formed in this reaction. To investigate this hypothesis the reactions of tri- p-chlorophenylsilane and tris- (p-trifluoro-methylphenyl)-silane with methyllithium were studied. For the purpose of comparison, the reactions of tri- p-tolylsilane, and tri- p-anisylsilane with methyllithiuni were also investigated. All of the para substituted silanes reacted with methyl-

[^0]
[^0]: (4) F, P. Irice, ibid, 69, 2600 (1947)

